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Introduction
Problem

Clustering time 
series

Feature selection Distance Decision criterion

Unsupervised learning



Introduction
Problem

• 25000 smart meters
• Observe load data every 15 minutes
• Several years of data
• Seasonal effects obfuscate system dynamics



Introduction
Problem

• 2 circuits
• 800 different 

inputs per circuit
• 2^16 timesteps

Example

Objective:
Cluster input-output 
data coming from the 
same circuit together
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Color distance
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Shape distance
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Leaf distance
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Fruit distance
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What is similarity?

UNIX distance



 
𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)

Introduction
The time series state of the art



Introduction

Three approaches

Liao, T. Warren. "Clustering of time series data—a survey." Pattern recognition 38.11 (2005): 1857-1874.

Raw data Feature-based Model-based

Throw away (a big part
of the) temporal information Capture structure/dynamics

The time series state of the art
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Temporal correlations?
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difference
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Second problem

How do we deconvolve?

Impulse 
response

InputNoise
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http://lpsa.swarthmore.edu/Representations/SysRepSS.html

How do we deconvolve?
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Second problem

http://lpsa.swarthmore.edu/Representations/SysRepSS.html

t

y(t)

Same input, 
different circuits

Input can dominate dynamics!
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The time series state of the art

http://lpsa.swarthmore.edu/Representations/SysRepSS.html

Euclidean
distance matrix

Traditional techniques 
don’t distinguish the models!

• 2 circuits
• 800 different 

inputs per circuit
• 2^16 timesteps
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A homomorphic approach
Homomorphic signal processing

 
𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)

𝐻(𝑢1 𝑘 )•𝐻(𝑢2 𝑘 )
𝑐 ∴ 𝐻(𝑢1 𝑘 )

𝑢1 𝑘 ∎ 𝑢2 𝑘
𝑐: 𝑢1 𝑘

𝑦1 𝑘 •𝑦2 𝑘
𝑐 ∴ 𝑦1 𝑘



A homomorphic approach
Homomorphic signal processing

𝑦1 𝑘 ∎ 𝑦2 𝑘
𝑐: 𝑦1 𝑘

 𝑦1 𝑘 •  𝑦2 𝑘
𝑐 ∴  𝑦1 𝑘

𝐷∎ 𝐿 𝐷•
−1

∎ + + + + •

𝐻



A homomorphic approach
The cepstrum

𝑦1 𝑘 ∗ 𝑦2 𝑘

F log F −1
∗ . . + + +

𝐷∗

𝑐𝑦1 𝑘 + 𝑐𝑦2 𝑘



A homomorphic approach
The cepstrum

De Cock, Katrien, and Bart De Moor. "Principal angles in system theory, information theory and signal processing." 
PhD thesis. 2002.



A homomorphic approach
The cepstrum

𝑦1 𝑘 ∗ 𝑦2 𝑘

F log F −1
∗ . . + + +

𝐷∗

𝑐𝑦1 𝑘 + 𝑐𝑦2 𝑘

Temporal correlations Deconvolution
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Cepstrum distance
Martin distance

𝑦1 𝑘

F log F −1
∗ . . + + +

𝐷∗

𝑐𝑦1 𝑘

𝑦2 𝑘

F log F −1
∗ . . + + +

𝐷∗

𝑐𝑦2 𝑘

𝑑 𝑦1, 𝑦2 =  

𝑘=1

∞

𝑘(𝑐𝑦1 𝑘 − 𝑐𝑦2 𝑘 )2

Martin, Richard J. "A metric for ARMA processes." IEEE Transactions on Signal Processing 48.4 (2000): 1164-1170.



Cepstrum distance
Stochastic models

De Cock, Katrien, and Bart De Moor. "Subspace angles and distances between ARMA models." 
Proc. of the Intl. Symp. of Math. Theory of networks and systems. Vol. 1. 2000.

White noise

Cepstrum

Mutual
information

Subspace
angles
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Stochastic models

De Cock, Katrien, and Bart De Moor. "Principal angles in system theory, information theory and signal processing." 
PhD thesis. 2002.
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Stochastic models

De Cock, Katrien, and Bart De Moor. "Principal angles in system theory, information theory and signal processing." 
PhD thesis. 2002.



Cepstrum distance
Stochastic models

De Cock, Katrien, and Bart De Moor. "Principal angles in system theory, information theory and signal processing." 
PhD thesis. 2002.

We can calculate 
distances

Between 
time series

Between 
models

Between time 
series and models

Calculate 
distance matrix 

explicitly

Model and calculate 
distances based on 

poles/zeros

Put time series 
through inverse 

model



Cepstrum distance
Stochastic models

𝐸 , . . = 0State

Contains all the 
relevant information!



Cepstrum distance
Stochastic models

De Cock, Katrien, and Bart De Moor. "Subspace angles and distances between ARMA models." 
Proc. of the Intl. Symp. of Math. Theory of networks and systems. Vol. 1. 2000.

Cepstrum of output equals (for 𝑘 > 0) the cepstrum of the transfer function
The cepstrum can be written in terms of poles (𝛼𝑖) and zeros (𝛽𝑖):

𝑐𝑦 𝑘 =  

𝑖=1

𝑝
𝛼𝑖
𝑘

𝑘
− 

𝑖=1

𝑞
𝛽𝑖
𝑘

𝑘
∀𝑘 > 0 .



Cepstrum distance
Deterministic models

Convolution becomes addition



Cepstrum distance
Deterministic distance option 1

𝑀1

𝑀2

Model the input as part of the dynamics



Deterministic distance
Deterministic distance option 1

http://lpsa.swarthmore.edu/Representations/SysRepSS.html

• 2 circuits
• 800 different 

inputs per circuit
• 2^16 timesteps

Input can dominate dynamics!



Cepstrum distance
Deterministic distance option 2

Look only at the process



Cepstrum distance
Deterministic distance option 2

The transfer function cepstrum is obtained by simply 
subtracting the input cepstrum from the output cepstrum 

Look only at the process



Cepstrum distance
Deterministic distance option 2

http://lpsa.swarthmore.edu/Representations/SysRepSS.html

• 2 circuits
• 800 different 

inputs per circuit
• 2^16 timesteps

This extension works in practice
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Summary of the extended distance



Conclusion

Temporal correlations?

t

y(t)

noise

How do we deconvolve?

Summary of the extended distance



Conclusion
Further research?



Conclusion
Further research?



Thank you for your
attention





Cepstrum of output equals (for 𝑘 > 0) the 
cepstrum of the transfer function.

The cepstrum can be written in terms of 
poles (𝛼𝑖) and zeros (𝛽𝑖):

𝑐𝑦 𝑘 =  

𝑖=1

𝑝
𝛼𝑖
𝑘

𝑘
− 

𝑖=1

𝑞
𝛽𝑖
𝑘

𝑘
∀𝑘 > 0 .

We can then define a norm:

||log𝐻||2 =  

𝑘=1

∞

𝑘𝑐𝑦(𝑘)
2

Extra Slides

We can fill in:

||log𝐻||2 =  

𝑘=1

∞

𝑘  

𝑖=1

𝑝
𝛼𝑖
𝑘

𝑘
− 

𝑖=1

𝑞
𝛽𝑖
𝑘

𝑘

2

 

𝑘=1

∞
𝑥𝑘

𝑘
= − log 1 − 𝑥 ∀ |𝑥| > 0

||log𝐻||2 =
 
𝑖=1
𝑝  

𝑗=1
𝑞

|1−𝛼𝑖
 𝛽𝑖|

2

 
𝑖,𝑗=1
𝑝

(1−𝛼𝑖 𝛼𝑗)
2  

𝑖,𝑗=1
𝑞

(1−𝛽𝑖
 𝛽𝑗)

2
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De Cock, Katrien, and De Moor, Bart. "Subspace angles and distances between ARMA models." 
Proc. of the Intl. Symp. of Math. Theory of networks and systems. Vol. 1. 2000.

cos 𝑢𝑖 < 𝑣𝑖 =
|𝑢𝑖𝑣𝑖

𝑇|

𝑢𝑖 𝑣𝑖

𝜌𝑥𝑦 =
𝐸 𝑋𝑌

𝐸 𝑋2 𝐸 𝑌2
=

𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
= lim

𝑗 →∞
cos 𝑥(𝑗) < 𝑦(𝑗)
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𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)

cos2 = λ 𝑌0|𝑖−1
(1)

𝑌0|𝑖−1
1 𝑇 −1
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(1)
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(2)
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2 𝑇 −1
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(2)

𝑌0|𝑖−1
1 𝑇
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𝑟𝑜𝑤(𝑌0|𝑖−1
(1)

) = 𝑟𝑜𝑤
𝑋𝑛
(1)

𝑈𝑛|𝑖−1

𝑟𝑜𝑤(𝑌0|𝑖−1
(2)

) = 𝑟𝑜𝑤
𝑋𝑛
(1)

𝑈𝑛|𝑖−1

𝑈𝑛|𝑖−1 =
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λ 𝑋𝑛
(1)

𝑋𝑛
1 𝑇 −1

𝑋𝑛
(1)

𝑋𝑛
2 𝑇
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𝑈𝑛|𝑖−1 =
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𝑈0|𝑖−1
(1)

=

λ
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Consistent with stochastic case


